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Entropy-driven phase separation and configurational correlations on a lattice:
Some rigorous results
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We prove that if there is a phase separation in a fully packed~FP! athermal system, it must be between pure
components only. We then rigorously demonstrate that no phase separation in an athermal FP state of hard
particle mixtures on alattice is possible merely due to size disparity or nonadditivity, if the configurations are
weakly correlated, i.e., are quasirandom. We consider a mixture of linear polymers atall packing fractions and
argue that no phase separation is possible in an athermal state. The last result also applies to a mixture of
flexible particles and hard dimers. Our results contradict many recent numerical results.
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I. INTRODUCTION

It is commonly believed that energetic effects govern
phenomenon of phase separation in a simple fluid mixtur
two species of particlesA and B, whereB cannot be larger
thanA in size. The belief is based on an implicit assumpti
that at infinite temperatures, where energy consideratio
irrelevant, there are nocorrelationsin the placement of par
ticles. Excluded volume effects, so that particles do not ov
lap, do not change the conclusion@1#. Let GA andGB denote
the number ofdistinctconfigurations for the pure states ofA
andB, respectively. The number of distinct configurationsG
for the mixture, which appears in the partition function, co
tains not only the combined original configurations of t
pure states, but also other states in which the particles
mixed. The difference,DGmix5G2GAGB represents all dis-
tinct mixedstates@2#. In the absence of correlations, mixing
random andDGmix;G; the entropy of mixing ispositiveand
the mixed state is entropically favorable. However, rec
work @3–5# has made the situation obscure mainly beca
of a rigorous and elegant mapping, first introduced by W
dom @6#, of a speciallattice mixture onto an Ising model in a
magnetic field. The model mixture has no energetics in te
of particles; the particles are not allowed to overlap. Yet
model exhibits@6,4# an entropically driven phase separatio
~It should be stressed that there is energetics between spi
the corresponding Ising model.! Widom noted a ‘‘clustering
tendency’’:when particles of one species cluster together
greater volume is accessible to particles of the other spec.
He explicitly demonstrated phase separation by invoking
Ising mapping, thereby giving credence to the clustering t
dency as a driving force for separation.

Let za denote the activity fora5A,B particles. The phase
separation occurs whenzB exceeds some critical value, i.e
when the packing fractions exceed some critical value
persists even in thefully packed ~FP!, i.e., maximally
packed,state@6#, which occurs whenzB>AzA→`. Frenkel
and co-workers@5# associate the phase separation with n
additivity in the mixture. However, numerical evidence
also provided for separation in additive hard-core mixtu
on a lattice with enough size disparity. The separation
again expected to persist in the FP state. They further a
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that the separation must exist not only in rigid particle m
tures but also inflexible particlemixtures such as a blend o
linear polymers.

However, there are conflicting results in the literatu
@1,3,5–8# on the possibility of phase separation in additi
mixtures, and the conflict is far from being settled@9#, de-
spite a renewed flurry of current activities. Both numeric
simulations and analytical approximations have certain d
advantages and the experiments suffer from slow dynam
@9#. Some resolution is needed as the problem is centra
many diverse fields such as binary fluid mixtures, colloi
polymers, mixtures of colloids and polymers, granular ma
rials, etc.

Some investigations@1,8# conclude against a phase sep
ration in hard particle mixtures, while others@3,5# argue for
it. It is important to note and is intuitively obvious that if th
size disparity forhard-sphere particlesis sufficiently large
for the small particles to enter into the voids left by larg
particles, therecannotbe a phase separation. The latter sc
nario @3,5#, therefore, cannot be generally valid. The inve
tigation of a blend of flexible particles, each of a fixed arc
tecture, on a Bethe lattice@7# also shows no phase separati
in the athermal limit, despite the fact that the two species
have any size disparity. This conflicts with numerical co
clusion @5#. Recently, we have also investigated phase se
ration induced by size disparity in a compressible polym
solution in its own monomeric solvent@10#, but the mixture
is not athermal.

It should be pointed out at this point that there do ex
genuine phase separations in the athermal limit@11,12#. A
phase separation between a polymer-rich phase an
polymer-poor phase occurs in an equilibrium polymerizat
process ofbranchedpolymers in the athermal limit@11#. The
phenomenon has not attracted much interest, presumably
cause of its complexity. In the polymerization model, t
density of a functional~end point, trifunctional, tetrafunc
tional, etc.! group is controlled by its respective activity~H,
w3 ,w4 , etc.!, and the bond density is controlled by a bon
activity K. It is found that if odd functionalitiesdisappearin
the limit H→0, the athermal phase separation also dis
pears. In particular, there isno phase separation in an athe
mal linear polymer solution. The placement of branch
polymers on the lattice israndom, only if all functional ac-
©2001 The American Physical Society04-1
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P. D. GUJRATI PHYSICAL REVIEW E 63 021504
tivities are equal to one@11#. In this case, the model reduce
to random bond percolation where the physics is trivial: th
is no phase separation; only gelation occurs. For functio
activities different from one,correlationsemerge in the sys
tem and induce phase separation. A similar situation occ
in some surface models@11#. Since the problem has bee
thoroughly investigated, we would not pursue it further.

The existence of phase separation in the FP state imp
that DGmix is thermodynamically insignificant@2#. This can
happen only if theconfigurational correlationsin the place-
ment of particles in each configuration are strong enoug
forbid mixing. These correlations are responsible for
clustering tendency and are usually induced by interactio
However, in athermal cases they can be induced by g
metrical constraints like branching@11,12# or size disparity
@5#, or by constraining the way @4,6# some particles are
placed on the lattice by decorating@6# the lattice. We will
establish in the next section that if there is a phase separa
in the FP state, it must be between the two pure compone
In the rest of the paper~Secs. III–V!, we consider only lat-
tice models, as is the case with the Widom model. We m
no comments on continuum analogs. We demonstrate rig
ously in Sec. III, that a phase separation in two pure com
nents is impossible in the FP state on alattice, if the corre-
lations areweak, i.e., if the configurations are quasirandom
We follow a line of approach that has proven very useful
a different context@13#. We obtain a rigorous lower boun
on the entropy of mixing for this state. Deciding whethe
system is additive or not is not unique for asymmetric p
ticles. Here, we consider closest distances between the
ters of mass of particles to decide whether the system
additive or not. By considering many models in the FP sta
we demonstrate that the issue of additivity does not play
important role in determining phase separation. Instead,
configurational correlation plays an important role in gove
ing phase separation. The investigation for a blend of flex
polymer chains is carried out atall packing densities in Sec
IV. The results in this section are based on the general s
metry properties of magnetic systems. In all model syste
besides the Widom model that we study here, we findno
phase separation. The final section contains a brief summ
of our results.

II. FULLY PACKED „FP… STATE

In all known cases with a single critical point, which in
clude ordinary ferromagnets, the spherical model, the Bo
Einstein condensation, order-disorder transitions in allo
the athermal equilibrium polymerization, etc., the discontin
ity in the order parameterh ~the tie line! continues to grow,
as we increase some parameterg that takes us away from th
critical point along the line of first-order transitions. The d
continuity in h reaches its maximum possible value asg
takes its maximum allowed value. The Bose-Einstein c
densation and the equilibrium polymerization are genu
athermal phenomena. Moreover, in all these cases we ca
‘‘penetrate’’ the coexistence region, no matter how we a
proach the coexistence.~We overlook spinodals, which do
not exist in rigorous statistical mechanics.! The spontaneous
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magnetization reaches its saturation value at the abso
temperatureT50. Similarly, the density of particles in th
zero momentum state or the absolute difference in the d
sity of the two components reaches its maximum value
T50. This is also what we expect to happen in the~FP! state,
in which the two coexisting phases must correspond to
two purecomponents, having either only particles ofA kind,
or of B kind, provided there exists a phase separation. T
density discontinuity must be a maximum. The above s
nario is certainly true in Widom’s model, which is nothin
but the two-dimensional Ising model in a field. This mod
and the equilibrium polymerization model@11,12,14# also
show that anathermal particle model can also be viewed
some cases as a magnetic model with energetics and
versa. Moreover, numerical simulations reported so far a
strongly indicate that the phase separation must be betw
the two pure componentsin the FP state. This is eviden
from the numerical results@5~a!,5~b!#. The tie line continues
to increase in width with the activity of the large particle.

The following discussion justifies the above scenario.
compressible and athermal binary mixture ofA andB species
is described by the partition function (N→`)

ZN5( G~N1 ,N2!K1
N1K2

N2, ~1!

whereG is the number of distinct configurations ofNA and
NB particles, each of sizead and bd, respectively, on a
d-dimensional hypercubic lattice offixed total sitesN5N0
1N11N2 . Here,a and b are the sides~in the units of the
lattice spacing, which we take to be 1 in the following! of
each hypercubic particleA and B, respectively, andN1
5NAad andN25NBbd. The number of voids is represente
by N0 . The sum is over distinct values ofN1 andN2 . The
activities for the two species areK1 and K2 , respectively,
defined in a manner that will make the presentation be
simpler. The corresponding chemical potentials arem1 and
m2 : bm j5 ln Kj , b51/T, where the absolute temperatu
T is in the units of the Boltzmann constant.

From Eq.~1! the following will be established.
~i! As K1→` for anyfinite and fixed K2 , N1→N and we

have anincompressiblepure A component. We continue to
have the pureincompressible Acomponent asK2→` ~after
K1→`).

~ii ! As K2→` for anyfinite and fixed K1 , N2→N and we
have anincompressiblepure B component. We continue to
have the pureincompressible Bcomponent asK1→` ~after
K2→`).

If we introduce two new variablesui51/(11Ki), we ob-
serve that we have pureincompressiblecomponentsA andB
along theu2 andu1 axes, respectively, except possibly at t
origin O; see Fig. 1, whereOC schematically represents th
coexistence curve terminating at the critical pointC. The
state of the system at the originO requires careful consider
ation; this will be done below.

The incompressible limit is most easily obtained by taki
the ‘‘zero-temperature’’ limitb51/T→`, which makes the
4-2
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ENTROPY-DRIVEN PHASE SEPARATION AND . . . PHYSICAL REVIEW E63 021504
activities Ki diverge, provided the corresponding chemic
potentials arepositive. It is the only case we will conside
below.

The corresponding free energy (1/N)ln ZN (N→`) is noth-
ing but the adimensional pressurebP, where we have set th
elemental cell volumen051:

bP5S1bm1f11bm2f2 , ~2!

or

P5TS1m1f11m2f2 , ~3!

where f i are the number densitiesNi /N and S(f1 ,f2)
[(1/N)ln G(N1,N2), N→`, is the entropy per site, which
satisfies

~]S/]f i !52bm i , i 51,2. ~4!

In equilibrium, the right-hand side in Eqs.~2! and ~3! must
be positive and at its maximum because of Eq.~4!. This
yields the above two results~i! and ~ii !, asT→0. The adi-
mensional pressurebP along theu1 ,u2 axes is infinitely
large. Alternatively, P5m j5max$m1,m2%, with the corre-
sponding densityf j51. At the coexistence,P must be the
same in both phases. This requiresm15m2 at coexistence.

It is also convenient to introduce a related partition fun
tion

Z̃N[ZN /K2
N5( G~N1 ,N2!KN1h0

N0, ~5!

where K5K1 /K2 and h051/K2 , and N25N2N12N0 .
The sum is overN0 andN1 . The entropyS is now a function
of the void densityf05N0 /N andf1 , such that

~]S/]f0!5bm2 , ~]S/]f1!52bDm. ~6!

This form of the partition function is useful in considerin
the incompressible, i.e., the FP limit of the mixture. For th
we takeh0→0, which requires takingK2→`, i.e., m2.0
andb→`. We also note thatK→0 ~pureB component! or
` ~pureA component! depending on whetherDm5m12m2
,0 or .0 in the same limit. The corresponding ‘‘free e
ergy’’ is b P̃5(1/N)ln Z̃N , N→`, with P̃5P2m2 :

FIG. 1. Schematic coexistence curveOC in the u1-u2 plane,
when there is phase separation atO. The possibility of an immisci-
bility loop betweenC andC8, when there is no phase separation
O is highly unlikely.
02150
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P̃5P2m25TS2f0m21f1Dm. ~7!

We must maximizeP̃ for the equilibrium. We again conside
the limit T→0. The equilibrium state corresponds to n
voids (f050) for m2.0. In this case, the entropy becom
a function off1 only, so that

~dSFP/df1!52bDm, ~8!

where the subscript FP denotes quantities in the incompr
ible limit (f050). ForDm→01, we have onlyA particles.
For Dm→02, we have onlyB particles. The important poin
to note is that we have eitherf151 (Dm.0) or f2
51 (Dm,0), as T→0 followed by Dm→06. Thus, we
again conclude that in the FP state, the coexistence occu
Dm50 betweenf151 andf251.

For h0→0, the sum in Eq.~5! reduces to only overN1 , as
N050. Moreover,K51 at the coexistence. Thus, at the c
existence in the incompressible limit, we have

Z̃N5Ḡ[(
N1

G~N1 ,N2N1!, ~9!

where the overbar indicates quantities at the coexistenc
the incompressible limit. It is evident from Eq.~9! that the
entropyS̄5(1/N)ln Ḡ in this case must be the maximum po
sible entropy:

S̄>SFP~f1!, f1P~0,1!. ~10!

From Eqs.~10! and ~8!, when applied to the coexistenc
(Dm50), we conclude that the convexity of the entrop
requires that it must be aconstantover the range~0,1! of f1 :

SFP~f1!5const, f1P~0,1!. ~11!

It is evident from the above that if there is a transition
the FP state, thenDm→06 allows us to discover the coex
isting phases. The coexisting phases are pure compon
~one of the two densities is zero!, andnot mixed states~nei-
ther of the densities is zero!. It is also obvious thatDm plays
the role of thesymmetry-breaking fieldin the problem. As is
a customary practice in statistical mechanics, anonzero
symmetry-breaking field must be applied and then allowed
go to zero in order to determine the nature of the coexist
phases. In addition toDm50, m2 must also be the same i
the coexisting phases; thus,P̃50, i.e.,P5m2 in the coexist-
ing phases. This is precisely what happens in the FP limi
Widom’s model, where the role ofDm50 is played by the
magnetic fieldH.

Thus, it is not possible to have a phase separation betw
two mixed states at intermediate densities in the incompr
ible state. The phase separation must occur only between
pure components here. Therefore, in the following we w
restrict ourselves to considering the possibility of pha
separation into pure components only. For this reason,
will no longer use the subscript FP to represent quantitie
the FP states.

t
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P. D. GUJRATI PHYSICAL REVIEW E 63 021504
Before leaving this section, we wish to make the follo
ing important observation. The above discussion treats
particles as hard particles of a shape so that FP states
(f050). However, it is easy to extend the discussion
flexible particles, as long as FP states exist. Thus, the ab
conclusions will also apply to a blend of linear chains
flexible polymers of fixed architectures like stars, brush
combs, dendrimers, etc.

III. SOME NEW MODELS

Let us first briefly review the results for the Widom
model, which is defined on a square lattice. The model c
tains two different kinds of particles: the ‘‘large’’~A! par-
ticles and the ‘‘small’’~B! particles. The most important as
pect of the model, in our opinion, is thegeometrical lattice
constraint that theA particles must reside inside the lattic
cell, butB particles on the lattice bonds. This gives rise to
unusual configurational correlation, which makes the mix
nonrandom. This can be easily seen as follows. Consider
two FP pure states, containingNA A particles and 2NB B
particles on two square lattices ofNA andNB sites, respec-
tively. For the mixture state, we consider a lattice withN
5NA1NB sites. The only possible state on this lattice is t
one that is phase separated@2#. For example, if we try to
remove anA particle, we leave behind an empty cell
which we cannot put anyB particle. Thus, a mixed state i
impossible. Indeed, the number ofB particles that can be
successfully placed on the lattice for any configuration ofNA
particles depends not only on the number of empty cells,
also on theirconfiguration. It is always less than 2NB , ex-
cept in the phase separated state in which all the empty
cluster together. We call this type of correlationstrong, in
which configurations of empty cells or ofA particles become
decisivein determining the number of successfulB particle
insertions. The correlations are generated in the model du
the geometrical constraint and forceDGmix;0. They would
be absent in the presence of sufficient free volume. T
would also be absent, had we allowedB’s to reside inside the
cells of a lattice ofN5NA12NB sites. The reason for phas
separation is the presence of geometrically generated c
lations; size disparity or nonadditivity alone is not sufficie
by itself, as we will demonstrate below in many example

A. A model with triangles

Let us consider a variant of the Widom model, in whi
eachB particle is cut into two equal triangles along the d
agonal that coincides with the lattice bond; see Fig. 2. T
triangles are restricted to live on lattice bonds without ov
lap with other triangles or large squares. There is still a s
disparity, but the system is now additive. However, t
model hasno phase separation, as the following intuitiv
argument suggests. Whenever a large particle is remo
four triangles can be put in its place. Thus, the strong c
figurational correlation of the Widom model has disa
peared. We call this type of correlationweak in which the
number of small particles that can be put depends only on
number of empty cells and not on their configurations. T
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configurations arequasirandomin that four triangles must be
put in each empty cell. To make the argument more prec
we follow Frenkel and Louis@4#. Using zt to denote the
activity for a triangle, we find that the contribution from
lattice bond with a single cross isz5(11zt), and with no
cross isz2. The numbers of bonds with two crosses, with o
cross and with no cross are

N25( ninj , N154NA22N2 , N052N24NA1N2 ,

~12!

respectively, whereNA5Sni . The contribution to the parti-
tion function from the triangles iszT, whereT5N112N0
54(N2NA)54(N2Sni). Thus, the problem is reduced t
decoupledIsing spins in an external magnetic field, whic
haveno phase separation. It is easy to see that there is
clustering tendency in the model.

B. Square particles of disparate sizes

Consider a square lattice of unit bond length. We consi
a mixture containing square particlesA and B of sizes a
3a andb3b, with b,a, and an aspect ratioa5a/b. The
system is additive if the centers of mass of the two partic
can line up; otherwise, it is nonadditive; see Fig. 3. It
easily seen that the clustering tendency exists, provided b
a andb are different from 1. Letl denote the least commo
multiple of a andb. Consider FP pure states. It is easy to s
that the number of distinct configurationsGA and GB;1;

FIG. 2. The small diamond particle in the Widom model
replaced by two triangles obtained by cutting it along its diago
occupying a lattice bond. The filled spot~d! denotes the center o
mass of the particle.

FIG. 3. The center of mass of the small square does not line
with that of the large square. See legend in Fig. 1 for~d!.
4-4
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ENTROPY-DRIVEN PHASE SEPARATION AND . . . PHYSICAL REVIEW E63 021504
hence,SA and SB vanish identically. We now consider aL
3L square lattice withN5NAa21NBb2;L3L sites. The
calculation of the lower bound on the entropy per site for
mixture is trivial due to the following quasirandom packin
We divide the lattice inton5@N/ l 2# l 3 l l cells, where@x#
denotes the integer closest tox. In eachl cell, we can either
put (l /a)2 A particles or (l /b)2 B particles. We nowran-
domly chosenA5@NA(a/ l )2# cells. The number of ways o
doing this is

GLB5n!/ @nA! ~n2nA!! #. ~13!

We put (l /a)2 large particles in each of the chosen cells a
( l /b)2 small particles in each of the remaining cells. Thu
the placement ofA andB particles on the lattice is quasiran
dom; consequently, the configurational correlations here
weak.

The actual number of distinct states for the mixture m
not be less thanGLB :

G>GLB . ~14!

A rigorous lower bound on the mixing entropySmix
[(1/N)ln(G/GAGB),N→`, is given by

SLB52~1/l 2!$fA ln fA1fB ln fB%>0. ~15!

Here, fA5NAa2/N and fB5NBb2/N so thatfA1fB51.
The entropy in Eq.~15! violates the requirement in Eq.~11!,
which is valid in the case of a phase separation. Thus,there
is no basis for phase separation in this case, no matter what
the sizes and their ratios are. It should be remarked that
above lower bound onSmix is not very poor, as it is identica
to the F-H entropy of mixing@14# for polymers of sizel 2.
~The bound can be easily improved.! The argument is easily
extended to three dimensions without altering the conc
sion, which, however, is inconsistent with that derived fro
Monte Carlo simulations@5#.

C. Particles of dissimilar shapes

We divide the smaller square into two right-angle t
angles, see Fig. 4, such that each triangle sits in a corner
b3b b cell. It is easily seen that the system is always no
additive. There are two ways in which two triangles can
put in anyb cell. Thus,GB;2NB;GA;1, as before. For the
mixture, we follow the construction described in the Sec. I
above, except that eachb cell is covered by two triangles in
two different ways. The latter contribution cancels exac

FIG. 4. The small square in Fig. 3 is cut along its diagonal; th
are two ways for the cut. See legend in Fig. 1 for~d!.
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the contribution fromGB and we obtain the same lowe
bound in Eq.~15! due to quasirandom packing as before. W
conclude that neither dissimilar shapes nor nonadditiv
gives rise to phase separation atO in Fig. 1.

So far we have restricted ourselves to FP states, sinceSa
for the FP pure components can be exactly calculated,
we can identify quasirandom configurations with weak c
relations in the mixture. This is not possible for partial
packed pure components and we could not argue that
bound obtained using the above method would be a rigor
lower bound. Thus, even though we have rigorously dem
strated the absence of a phase separation atO, the absence of
phase separation in the immediate neighborhood ofO cannot
be demonstrated rigorously by our approach. However,
appeal to continuity demands that there is no phase sep
tion in the immediate neighborhood ofO. The most probable
scenario is thatOC does not exist.

It is very hard to believe that the systems considered
Secs. III B and III C above will remain miscible as the pac
ing fraction is reduced until it reaches some critical pack
fraction corresponding toC8 when they become immiscible
only to become miscible again at some yet lower critic
packing fraction corresponding toC; see Fig. 1, where the
portion OC8 does not exist any more. This scenario wou
require the existence of two critical pointsC andC8 with an
immiscibility loop in between. We show below that such
scenario is not possible for at least one simple case in wh
the solvent is a hard dimer (231, 23131, etc.!. This is a
special limit of the blend considered below.

IV. BLENDS

We consider an athermal blend of molecules of two s
cies A and B. We further assume that monomers of eith
species occupy one unit cell. The moleculeA and B repre-
sents a solvent, a dimer, a trimer, etc., if it contains one, t
three, etc., monomers. A solvent or a dimer corresponds
rigid particle. The remaining forms representflexible par-
ticles or polymers. The polymer problem is related to
‘‘zero-component’’ magnetic system by extending the an
ogy first proposed by deGennes@14#. The extension due to
Ryu and Gujrati@15# can be applied to a blend ofA and B
chains in a solvent. These chains are polydisperse, with
average degree of polymerization of each species contro
by activitiesKa , Ha , a5A or B. Here,Ka is the ferromag-
netic coupling andHa the magnetic field, and the adimen
sional Hamiltonian~a minus sign is absorbed in the defin
tion! is

H5KA( si•sj1KB( ti•tj1HA( s~1!1HB( t~1!;

~16!

the first two sums are over distinct nearest-neighbor sites
the remaining two sums are over each site of the lattice.
spinss andt are the first and the secondn components of a
2n-component spinS located at each site:S5(s,t). The n
50 magnetic partition function, with some trivial normaliza
tion, gives the partition function for the blend:

e
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Zp511( hA
eAhB

eBkA
BakB

BB, ~17!

where ka5Ka /z is the bond activity,ha5Ha /Az is the
end-point activity for a5A or B species, z511(HA

2

1HB
2)/2 and the sum is over distinct configurations of po

mers. Here,ea andBa denote the number of end points an
the number of bonds in all ofa-species polymer chains. So
vent molecules in the original model will be treated as vo
to allow for free volume and, hence, partial packing. A vo
covers a cell left uncovered by polymers.

Various general conclusions can be drawn immedia
from the form of the Hamiltonian in Eq.~16!. If there is
phase separation, it must be limited to the subspace in w
at least one of the two magnetic fields vanishes, due to
up-down symmetry in Eq.~16!. In the zero-field limit, both
polymers are infinitely long. As one of the magnetic fiel
increases, polymers corresponding to this field decreas
average size, until they become dimers when the field
verges. In order to keep bond activities fixed and finite,
must also allow the ferromagnetic couplings to diverge
multaneously.

The coexistence between oppositely magnetized ph
occurs atzerofields in the magnetic model and is obtained
the fields go to zero from either side. Since activities in E
~17! must be non-negative, all parameters in Eq.~16! must
be non-negative for a valid polymer connection. Hen
negativelymagnetized phases and, therefore, the magn
coexistence at zero fields have no physical relevance for
polymer problem. There is no phase separation, no ma
what the degree of polymerization of the two kinds of cha
contrary to the numerical conclusion@5# and the theoretica
claim @16#.
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We also do not agree with the original argument of Fre
kel and Louis@4# that a polymer solution must phase sep
rate in an athermal state. There is a flaw in their argum
Each configuration of large particles, in general, gives rise
a large number of polymer configurations and not one
assumed@4#. The easiest way to see this is to consider the
state of the large particles. Such a state can be converte
describe polymer configurations, known as the Hamilt
walk problem@13#, in which the chain must cover all sites o
the lattice. It is well known that their number is expone
tially large @13#. Indeed, the above compressible polym
solution can be exactly mapped onto a magnetic model@17#,
which has no phase separation relevant for polymers.

V. SUMMARY

In summary, by considering variouslattice models con-
taining hard particles of different shapes and/or sizes,
have rigorously shown that the models cannot phase sep
in FP pure components. Consideration is limited to ph
separation in pure components, as any phase separatio
the FP state must be into these two states. The exam
show that the existence of weak configurational correlati
due to quasirandomness is sufficient for the absence of p
separation. The strong configurational correlation presen
the Widom model is responsible for the observed phase s
ration. We also show that no phase separation can occu
an athermal blend of polymers at any packing fraction. T
last result is also valid for polymers in a solution or a ha
dimer solvent. Our results contradict some recent numer
results, thus casting doubts on the usefulness of such m
ods for studying athermal phase separation.
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