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Entropy-driven phase separation and configurational correlations on a lattice:
Some rigorous results
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We prove that if there is a phase separation in a fully pa¢k&y athermal system, it must be between pure
components only. We then rigorously demonstrate that no phase separation in an athermal FP state of hard
particle mixtures on #attice is possible merely due to size disparity or nonadditivity, if the configurations are
weakly correlated, i.e., are quasirandom. We consider a mixture of linear polynarpatking fractions and
argue that no phase separation is possible in an athermal state. The last result also applies to a mixture of
flexible particles and hard dimers. Our results contradict many recent numerical results.
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[. INTRODUCTION that the separation must exist not only in rigid particle mix-
tures but also irflexible particlemixtures such as a blend of
It is commonly believed that energetic effects govern thdinear polymers.

phenomenon of phase separation in a simple fluid mixture of However, there are conflicting results in the literature
two species of particles and B, whereB cannot be larger [1,3,5-8 on the possibility of phase separation in additive
thanA in size. The belief is based on an implicit assumptionmixtures, and the conflict is far from being settled, de-
that at infinite temperatures, where energy consideration igPite a renewed flurry of current activities. Both numerical
irrelevant, there are noorrelationsin the placement of par- simulations and analytical _approxmatlons have certain dl_s-
ticles. Excluded volume effects, so that particles do not overddvantages and the experiments suffer from slow dynamics

lap, do not change the conclusifiti. Let T , andT's denote [9]. Some resolution is needed as the problem is central in

the number ofiistinct configurations for the pure states Af many dlversg fields such as binary fluid mixtures, colloids,
andB, respectively. The number of distinct configuratidns polymers, mixtures of colloids and polymers, granular mate-

for the mixture, which appears in the partition function con—rials’ etc.
. ' pp 1 the p ) . ' Some investigationgl,8] conclude against a phase sepa-
tains not only the combined original configurations of the

but al h in which th il ration in hard particle mixtures, while othdr3,5] argue for
pure states, but also other states in which the particles ate i js jmportant to note and is intuitively obvious that if the
mixed. The differenceAT =1 —T'AI'g represents all dis-

! . . 1 HST size disparity forhard-sphere particless sufficiently large
tinct mixedstateg2]. In the absence of correlations, mixing is o the small particles to enter into the voids left by larger
random and\T",,~T"; the entropy of mixing ipositiveand  particles, thereeannotbe a phase separation. The latter sce-
the mixed state is entropically favorable. However, recenhario[3,5], therefore, cannot be generally valid. The inves-
work [3-5] has made the situation obscure mainly becausgigation of a blend of flexible particles, each of a fixed archi-
of a rigorous and elegant mapping, first introduced by Wi-tecture, on a Bethe latti@] also shows no phase separation
dom[6], of a specialattice mixture onto an Ising model in a in the athermal limit, despite the fact that the two species can
magnetic field. The model mixture has no energetics in termfave any size disparity. This conflicts with numerical con-
of particles; the particles are not allowed to overlap. Yet theclusion[5]. Recently, we have also investigated phase sepa-
model exhibitd6,4] an entropically driven phase separation. ration induced by size disparity in a compressible polymer
(It should be stressed that there is energetics between spinsda|ution in its own monomeric solveft0], but the mixture
the corresponding Ising modelWidom noted a “clustering is not athermal.
tendency”:when particles of one species cluster together, a It should be pointed out at this point that there do exist
greater volume is accessible to particles of the other speciegjenuine phase separations in the athermal I[mit,12. A
He explicitly demonstrated phase separation by invoking th¢hase separation between a polymer-rich phase and a
Ising mapping, thereby giving credence to the clustering tenpolymer-poor phase occurs in an equilibrium polymerization
dency as a driving force for separation. process obranchedpolymers in the athermal limftL1]. The
Letz, denote the activity forr=A, B particles. The phase phenomenon has not attracted much interest, presumably be-
separation occurs whery exceeds some critical value, i.e., cause of its complexity. In the polymerization model, the
when the packing fractions exceed some critical value andensity of a functionalend point, trifunctional, tetrafunc-
persists even in theully packed (FP), i.e., maximally tional, etc) group is controlled by its respective activiti,
packed state[6], which occurs whemzg=\z,— . Frenkel ws3,W,, etc), and the bond density is controlled by a bond
and co-workerg5] associate the phase separation with non-activity K. It is found that if odd functionalitiedisappearin
additivity in the mixture. However, numerical evidence isthe limit H—O0, the athermal phase separation also disap-
also provided for separation in additive hard-core mixturegpears. In particular, there s phase separation in an ather-
on a lattice with enough size disparity. The separation ismal linear polymer solution. The placement of branched
again expected to persist in the FP state. They further argysolymers on the lattice isandom only if all functional ac-
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tivities are equal to ongl1]. In this case, the model reduces magnetization reaches its saturation value at the absolute
to random bond percolation where the physics is trivial: theregemperatureT =0. Similarly, the density of particles in the

is no phase separation; only gelation occurs. For functionatero momentum state or the absolute difference in the den-
activities different from onegorrelationsemerge in the sys- sity of the two components reaches its maximum value at
tem and induce phase separation. A similar situation occur§=0. This is also what we expect to happen in tRE) state,

in some surface modeldl1]. Since the problem has been in which the two coexisting phases must correspond to the
thoroughly investigated, we would not pursue it further.  two pure components, having either only particlesfokind,

The existence of phase separation in the FP state impliesr of B kind, provided there exists a phase separation. The
that AT, is thermodynamically insignificari2]. This can  density discontinuity must be a maximum. The above sce-
happen only if theconfigurational correlationsn the place- nario is certainly true in Widom’s model, which is nothing
ment of particles in each configuration are strong enough tbut the two-dimensional Ising model in a field. This model
forbid mixing. These correlations are responsible for theand the equilibrium polymerization modél1,12,14 also
clustering tendency and are usually induced by interactionshow that arathermal particle model can also be viewed in
However, in athermal cases they can be induced by gesome cases as a magnetic model with energetics and vice
metrical constraints like branchirld 1,12 or size disparity versa Moreover, numerical simulations reported so far also
[5], or by constrainingthe way [4,6] some particles are strongly indicate that the phase separation must be between
placed on the lattice by decoratih§] the lattice. We will  the two pure componentén the FP state. This is evident
establish in the next section that if there is a phase separatidrom the numerical resulib(a),5(b)]. The tie line continues
in the FP state, it must be between the two pure componentt increase in width with the activity of the large particle.

In the rest of the papdiSecs. IlI-\}, we consider only lat- The following discussion justifies the above scenario. A
tice models, as is the case with the Widom model. We makeompressible and athermal binary mixturefodndB species

no comments on continuum analogs. We demonstrate rigolis described by the partition functiomN(- )

ously in Sec. lll, that a phase separation in two pure compo-

nents is impossible in the FP state otatice, if the corre-

lations areweak i.e., if the configurations are quasirandom.

We follow a line of approach that has proven very useful in In= 2
a different contex{13]. We obtain a rigorous lower bound

on the entropy of mixing for this state. Deciding whether a

system is additive or not is not unique for asymmetric parwherelI is the number of distinct configurations bf, and
ticles. Here, we consider closest distances between the ceNy particles, each of siza® and bY, respectively, on a
ters of mass of particles to decide whether the system ig-dimensional hypercubic lattice dixed total sitesN=N,
additive or not. By considering many models in the FP state4 N;+N,. Here,a andb are the sidegin the units of the
we demonstrate that the issue of additivity does not play amattice spacing, which we take to be 1 in the followingf
important role in determining phase separation. Instead, theach hypercubic particlé\ and B, respectively, andN;
configurational correlation plays an important role in govern-=N,a® andN,=Ngbh®. The number of voids is represented
ing phase separation. The investigation for a blend of flexibleyy No. The sum is over distinct values df, andN,. The
polymer chains is carried out atl packing densities in Sec. activities for the two species ail€; andK,, respectively,

IV. The results in this section are based on the general symiefined in a manner that will make the presentation below

metry properties of magnetic systems. In all model systemgimpler. The corresponding chemical potentials ageand
besides the Widom model that we study here, we fiod - Bui=InK;, B=1/T, where the absolute temperature

phase separation. The final section contains a brief summaryis in the units of the Boltzmann constant.
of our results. From Eq.(1) the following will be established.

(i) As K;— for anyfinite and fixed &, N;—N and we
have anincompressiblgoure A component. We continue to
have the puréncompressible Aomponent a¥,— (after

In all known cases with a single critical point, which in- K;—2).
clude ordinary ferromagnets, the spherical model, the Bose- (ii) As K,—o for anyfinite and fixed K, N,—N and we
Einstein condensation, order-disorder transitions in alloyshave anincompressiblegoure B component. We continue to
the athermal equilibrium polymerization, etc., the discontinu-have the puréncompressible BEomponent a¥;— (after
ity in the order parameten (the tie line continues to grow, K,—®).
as we increase some paramegahat takes us away from the If we introduce two new variables; = 1/(1+K;), we ob-
critical point along the line of first-order transitions. The dis- serve that we have puiecompressibleomponent# andB
continuity in » reaches its maximum possible value as along theu, andu, axes, respectively, except possibly at the
takes its maximum allowed value. The Bose-Einstein conorigin O; see Fig. 1, wher©C schematically represents the
densation and the equilibrium polymerization are genuineoexistence curve terminating at the critical poit The
athermal phenomena. Moreover, in all these cases we cannstiate of the system at the origi requires careful consider-
“penetrate” the coexistence region, no matter how we ap-ation; this will be done below.
proach the coexistencéWe overlook spinodals, which do The incompressible limit is most easily obtained by taking
not exist in rigorous statistical mechanijc$he spontaneous the “zero-temperature” limit3=1/T—, which makes the

N

(N, N KK D2, &)

Il. FULLY PACKED (FP) STATE
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24 P=P—up=TS— oo+ il . @)

We must maximizé® for the equilibrium. We again consider
C the limit T—0. The equilibrium state corresponds to no
voids (¢o=0) for u,>0. In this case, the entropy becomes
C’ a function of ¢, only, so that

(dSep/depy) = — BAp, 8

O > u where the subscript FP denotes quantities in the incompress-
ible limit (¢$,=0). ForAu—0", we have onlyA particles.
FIG. 1. Schematic coexistence cur@C in the u;-u, plane,  ForAu—0~, we have onlyB particles. The important point

when there is phase separatiorCatThe possibility of an immisci-  to note is that we have eithe;=1 (Au>0) or ¢,
bility loop betweenC andC’, when there is no phase separation at — 1 (Au<0), asT—0 followed by Au—0*. Thus, we
O is highly unlikely. again conclude that in the FP state, the coexistence occurs at
pn=0 betweenp,=1 andp,=1.

For 7,—0, the sum in Eq(5) reduces to only oveX, as
No=0. Moreover,K=1 at the coexistence. Thus, at the co-
existence in the incompressible limit, we have

activities K; diverge, provided the corresponding chemicalA
potentials aregpositive It is the only case we will consider
below.

The corresponding free energy Kin Zy (N—x) is noth-
ing but the adimensional pressyB®, where we have set the o
elemental cell volumey=1: ZN:FENE [(N1,N=Ny), 9)

1

BP=S+Bui¢1+Burb,, 2 o . ) .
where the overbar indicates quantities at the coexistence in
or the incompressible limit. It is evident from E) that the

entropyS= (1/N)In T in this case must be the maximum pos-
P=TSt w1t oo, ® e o P

sible entropy:
where ¢; are the number densitied;/N and S(¢4,®») _
=(1/N)InT'(N;,N,), N—oo, is the entropy per site, which S=Sep(é1),  $1€(0,D). (10
satisfies
From Egs.(10) and (8), when applied to the coexistence
(0S19¢))=—Bui, i=1,2. (4 (Ap=0), we conclude that the convexity of the entropy

I ) . requires that it must be@nstantover the rang€0,1) of ¢ :
In equilibrium, the right-hand side in Eg&) and (3) must

be positive and at its maximum because of E4). This Sed ) =const, ¢, e(0,1). (12)
yields the above two resuli$) and (i), asT—0. The adi-
mensional pressur@P along theu;,u, axes is infinitely It is evident from the above that if there is a transition in

large. Alternatively, P=u;=maxu,.uz}, With the corre-  the Fp state, thed u—0* allows us to discover the coex-
sponding density; =1. At the coexistence?” must be the jsting phases. The coexisting phases are pure components
same in both phases. This requires=u, at coexistence.  (one of the two densities is zer@ndnot mixed stategnei-
It is also convenient to introduce a related partition func-ther of the densities is zexdt is also obvious thahu plays
tion the role of thesymmetry-breaking fielsh the problem. As is
a customary practice in statistical mechanicsh@nzero
ZNEZN/KQZ E F(Nl,NZ)KNlngo, (5) symmetry-l_)reaking field must_ be applied and then aIIow_eo_I to
go to zero in order to determine the nature of the coexisting
where K=K, /K, and 7o=1/K,, and Ny=N—N;—N,. phases. In addition td =0, u, must also be the same in

The sum is oveN, andN; . The entropySis now a function ~ the coexisting phases; thu8=0, i.e.,P=p, in the coexist-

of the void densityo=Ny/N and ¢,, such that ing phases. This is precisely what happens in the FP limit in
Widom’s model, where the role af x=0 is played by the
(0S/ddg)=PBpro, (ISIdp)=—BAu. (6)  magnetic fieldH.

) N o ) o Thus, it is not possible to have a phase separation between
This form of the partition function is useful in considering two mixed states at intermediate densities in the incompress-
the incompressible, i.e., the FP limit of the mixture. For this,jp|e state. The phase separation must occur only between two
we take 77— 0, which requires takindK;—, i.e., u,>0  pure components here. Therefore, in the following we will
and g—. We also note thak—0 (pureB componentor  restrict ourselves to considering the possibility of phase
= (pure A componentdepending on whetheku=u1— 1,  separation into pure components only. For this reason, we
<0 or >0 in the same limit. The corresponding “free en- will no longer use the subscript FP to represent quantities in
ergy” is BP=(1/N)InZy, N—oo, with P=P— u,: the FP states.
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Before leaving this section, we wish to make the follow-
ing important observation. The above discussion treats the
particles as hard particles of a shape so that FP states exist

(¢po=0). However, it is easy to extend the discussion to
flexible particles, as long as FP states exist. Thus, the above T
conclusions will also apply to a blend of linear chains or
flexible polymers of fixed architectures like stars, brushes, l

combs, dendrimers, etc.

. SOME NEW MODELS

Let us first briefly review the results for the Widom  FIG. 2. The small diamond particle in the Widom model is
model, which is defined on a square lattice. The model conreplaced by two triangles obtained by cutting it along its diagonal
tains two different kinds of particles: the “large(A) par-  occupying a lattice bond. The filled sp@®) denotes the center of
ticles and the “small”(B) particles. The most important as- mass of the particle.
pect of the model, in our opinion, is tleeometrical lattice
constraintthat theA particles must reside inside the lattice configurations arguasirandomin that four triangles must be
cell, butB particles on the lattice bonds. This gives rise to anput in each empty cell. To make the argument more precise,
unusual configurational correlation, which makes the mixingwe follow Frenkel and Louig§4]. Using z; to denote the
nonrandom This can be easily seen as follows. Consider theactivity for a triangle, we find that the contribution from a
two FP pure states, containing, A particles and Rlg B lattice bond with a single cross is=(1+z), and with no
particles on two square lattices Nfy and Ng sites, respec- cross is¢?. The numbers of bonds with two crosses, with one
tively. For the mixture state, we consider a lattice with  cross and with no cross are
=Na+ Ng sites. The only possible state on this lattice is the
one that is phase separatgt]. For example, if we try to _ . _ _ AN
remove anA particle, we leave behind an empty cell in Nz=20 minj, Ni=4Na=2Nz, No=2N-4Np+N;,
which we cannot put an particle. Thus, a mixed state is (12)
impossible Indeed, the number dB particles that can be ) o _
successfully placed on the lattice for any configuratiolgf ~ espectively, wheré,=Xn;. The cgntnbunon to the parti-
particles depends not only on the number of empty cells, buon function from the triangles ig", whereT=N,+2Ng
also on theirconfiguration It is always less thani@g, ex- =4(N=Na)=4(N—2n;). Thus, the problem is reduced to
cept in the phase separated state in which all the empty celf§ecoupledising spins in an external magnetic field, which
cluster together. We call this type of correlatistiong in ~ haveno phase separation. It is easy to see that there is no
which configurations of empty cells or éfparticles become ~clustering tendency in the model.
decisivein determining the number of successRilparticle
insertions. The correlations are generated in the model due to B. Square particles of disparate sizes
the geometrical constraint and fordd",;,~0. They would
be absent in the presence of sufficient free volume. Theyé
would also be absent, had we allow®d to reside inside the
cells of a lattice oN=Nj,+ 2Ng sites. The reason for phase
separation is the presence of geometrically generated corr
lations; size disparity or nonadditivity alone is not sufficient
by itself, as we will demonstrate below in many examples.

Consider a square lattice of unit bond length. We consider
mixture containing square particlds and B of sizesa

Xa andbXb, with b<a, and an aspect rati@a=a/b. The
system is additive if the centers of mass of the two particles
&an line up; otherwise, it is nonadditive; see Fig. 3. It is
easily seen that the clustering tendency exists, provided both
a andb are different from 1. Let denote the least common
multiple of a andb. Consider FP pure states. It is easy to see
A. A model with triangles that the number of distinct configurationy, and I'g~1;

Let us consider a variant of the Widom model, in which
eachB particle is cut into two equal triangles along the di-
agonal that coincides with the lattice bond; see Fig. 2. The
triangles are restricted to live on lattice bonds without over-
lap with other triangles or large squares. There is still a size
disparity, but the system is now additive. However, the | |
model hasno phase separation, as the following intuitive -
argument suggests. Whenever a large particle is removed,
four triangles can be put in its place. Thus, the strong con-
figurational correlation of the Widom model has disap-
peared. We call this type of correlatiameakin which the
number of small particles that can be put depends only on the FIG. 3. The center of mass of the small square does not line up
number of empty cells and not on their configurations. Thewith that of the large square. See legend in Fig. 1(#®y.
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the contribution fromI's and we obtain the same lower
bound in Eq(15) due to quasirandom packing as before. We
conclude that neither dissimilar shapes nor nonadditivity
gives rise to phase separation@in Fig. 1.

So far we have restricted ourselves to FP states, $pce
for the FP pure components can be exactly calculated, and
we can identify quasirandom configurations with weak cor-
relations in the mixture. This is not possible for partially

FIG. 4. The small square in Fig. 3 is cut along its diagonal; therepaCked pur-e components and we could not argue t.hat the
are two ways for the cut. See legend in Fig. 1 (@). bound obtained using the above method wquld be a rigorous
lower bound. Thus, even though we have rigorously demon-

hence,S, and S vanish identically. We now considerla strated the absence of a phase separati@ tite absence of
XL square lattice withN=Nja2+Ngb?~L XL sites. The phase separation in the immediate neighborhoo@ oannot

calculation of the lower bound on the entropy per site for theP?® demonstrated rigorously by our approach. However, an
mixture is trivial due to the following quasirandom packing. &PP€al to continuity demands that there is no phase separa-
We divide the lattice intan=[N/I2]IXI | cells, where[x] tion in the immediate neighborhood 6f The most probable

denotes the integer closesbtoln eachl cell, we can either SC€nario is thaOC does not exist. _ _
put (1/a)? A particles or [/b)? B particles. We nowan- It is very hard to believe that the systems considered in

domly chosen,=[N(a/l1)?] cells. The number of ways of Secs. llIB and 1l C above will remain miscible as the pack-
doing this is A A ' ing fraction is reduced until it reaches some critical packing

fraction corresponding t€’ when they become immiscible,
Iig=nl/[nal(n—ny)!]. (13) only to become miscible again at some yet lower critical
packing fraction corresponding G; see Fig. 1, where the
We put (/a)? large particles in each of the chosen cells andportion OC’ does not exist any more. This scenario would
(I/b)? small particles in each of the remaining cells. Thus,require the existence of two critical poirBsandC’ with an
the placement oA andB particles on the lattice is quasiran- immiscibility loop in between. We show below that such a
dom; consequently, the configurational correlations here arscenario is not possible for at least one simple case in which
weak. the solvent is a hard dimer 1, 2xX1X1, etc). This is a
The actual number of distinct states for the mixture mustpecial limit of the blend considered below.
not be less tha' z:

IV. BLENDS
I'=rg. (14

We consider an athermal blend of molecules of two spe-
A rigorous lower bound on the mixing entrop$,, ciesA andB. We further assume that monomers of either

=(1/N)In(I'/T AI'g),N—0, is given by species occupy one unit cell. The molecdlend B repre-
sents a solvent, a dimer, a trimer, etc., if it contains one, two,
Sig=—(UN?){paIn pa+ pgIn ¢pg}=0. (15  three, etc., monomers. A solvent or a dimer corresponds to a

rigid particle. The remaining forms represdigxible par-
Here, po=Npa?/N and ¢g=Ngb?/N so thatds+dg=1.  ticles or polymers. The polymer problem is related to a
The entropy in Eq(15) violates the requirement in EGLL),  “zero-component” magnetic system by extending the anal-
which is valid in the case of a phase separation. Tthexe ogy first proposed by deGennEM]. The extension due to
is no basis for phase separation in this case matter what  Ryu and Guijrat{15] can be applied to a blend & and B
the sizes and their ratios are. It should be remarked that thehains in a solvent. These chains are polydisperse, with the
above lower bound 08y, is not very poor, as it is identical average degree of polymerization of each species controlled
to the F-H entropy of mixing[14] for polymers of sizd®.  py activitiesK,,, H,, a=A or B. Here K, is the ferromag-
(The bound can be easily improvedhe argument is easily netic coupling ancH,, the magnetic field, and the adimen-

extended to three dimensions without altering the conclusional Hamiltonian(a minus sign is absorbed in the defini-
sion, which, however, is inconsistent with that derived fromtjon) is

Monte Carlo simulation$5].

C. Particles of dissimilar shapes H=KaY 01-0;+KgX 7 7+HaY oM +Hg> 7Y

We divide the smaller square into two right-angle tri- (16)
angles, see Fig. 4, such that each triangle sits in a corner of a
bXxb b cell. It is easily seen that the system is always non-the first two sums are over distinct nearest-neighbor sites and
additive. There are two ways in which two triangles can bethe remaining two sums are over each site of the lattice. The
put in anyb cell. Thus,I'g~2Ne;T",~ 1, as before. For the spinso and 7 are the first and the secomcomponents of a
mixture, we follow the construction described in the Sec. Il B2n-component spirS located at each sit&8=(o,7). Then
above, except that eadhcell is covered by two triangles in =0 magnetic partition function, with some trivial normaliza-
two different ways. The latter contribution cancels exactlytion, gives the partition function for the blend:
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en o8, Ba, Bo We also do not agree with the original argument of Fren-

= 1+2 Np Mg KA KgSs 17 kel and Louis[4] that a polymer solution must phase sepa-

rate in an athermal state. There is a flaw in their argument.

where =K /z is the bond activity,7,=H,/\z is the  Each configuration of large particles, in general, gives rise to

end-point activity for a=A or B species,z=1+(H,§ a large number of polymer configurations and not one as

+H3)/2 and the sum is over distinct configurations of poly- assumed4]. The easiest way to see this is to consider the FP

mers. Hereg, andB, denote the number of end points and state of the large particles. Such a state can be converted to
the number of bonds in all at-species polymer chains. Sol- describe polymer configurations, known as the Hamilton
vent molecules in the original model will be treated as voidswalk problem[13], in which the chain must cover all sites of
to allow for free volume and, hence, partial packing. A voidthe lattice. It is well known that their number is exponen-
covers a cell left uncovered by polymers. tially large [13]. Indeed, the above compressible polymer
Various general conclusions can be drawn immediatelyolution can be exactly mapped onto a magnetic mpbid|

from the form of the Hamiltonian in Eq(16). If there is  which has no phase separation relevant for polymers.
phase separation, it must be limited to the subspace in which

at least one of the two magnetic fields vanishes, due to the
up-down symmetry in Eq(16). In the zero-field limit, both
polymers are infinitely long. As one of the magnetic fields
increases, polymers corresponding to this field decrease in In summary, by considering variodattice models con-
average size, until they become dimers when the field ditaining hard particles of different shapes and/or sizes, we
verges. In order to keep bond activities fixed and finite, wehave rigorously shown that the models cannot phase separate
must also allow the ferromagnetic couplings to diverge siin FP pure components. Consideration is limited to phase
multaneously. separation in pure components, as any phase separation in
The coexistence between oppositely magnetized phasdlse FP state must be into these two states. The examples
occurs aterofields in the magnetic model and is obtained asshow that the existence of weak configurational correlations
the fields go to zero from either side. Since activities in Eq.due to quasirandomness is sufficient for the absence of phase
(17) must be non-negative, all parameters in Etf) must  separation. The strong configurational correlation present in
be non-negative for a valid polymer connection. Hencethe Widom model is responsible for the observed phase sepa-
negativelymagnetized phases and, therefore, the magneti@ation. We also show that no phase separation can occur in
coexistence at zero fields have no physical relevance for then athermal blend of polymers at any packing fraction. The
polymer problem. There is no phase separation, no mattdast result is also valid for polymers in a solution or a hard
what the degree of polymerization of the two kinds of chain,dimer solvent. Our results contradict some recent numerical
contrary to the numerical conclusi¢B] and the theoretical results, thus casting doubts on the usefulness of such meth-

V. SUMMARY

claim [16]. ods for studying athermal phase separation.
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